2023年中考数学压轴专题:二次函数与平移变换综合问题(含答案解析)
《2023年中考数学压轴专题:二次函数与平移变换综合问题(含答案解析)》由会员分享,可在线阅读,更多相关《2023年中考数学压轴专题:二次函数与平移变换综合问题(含答案解析)(60页珍藏版)》请在七七文库上搜索。
1、二次函数与平移变换综合问题【例1】(2022湖北)如图,在平面直角坐标系中,已知抛物线yx22x3的顶点为A,与y轴交于点C,线段CBx轴,交该抛物线于另一点B(1)求点B的坐标及直线AC的解析式;(2)当二次函数yx22x3的自变量x满足mxm+2时,此函数的最大值为p,最小值为q,且pq2,求m的值;(3)平移抛物线yx22x3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围【例2】(2022常州)已知二次函数yax2+bx+3的自变量x的部分取值和对应函数值y如下表:x10123y430512(1)求二次函
2、数yax2+bx+3的表达式;(2)将二次函数yax2+bx+3的图象向右平移k(k0)个单位,得到二次函数ymx2+nx+q的图象,使得当1x3时,y随x增大而增大;当4x5时,y随x增大而减小请写出一个符合条件的二次函数ymx2+nx+q的表达式y ,实数k的取值范围是 ;(3)A、B、C是二次函数yax2+bx+3的图象上互不重合的三点已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图象的对称轴对称,求ACB的度数【例3】(2022连云港)已知二次函数yx2+(m2)x+m4,其中m2(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y
3、x2+(m2)x+m4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线yx2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求AOB面积的最大值【例4】(2022聊城)如图,在直角坐标系中,二次函数yx2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x1,顶点为点D(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图所示,求证:DACBCO;(3)如图,延长DC交x轴于点M,平移二次函数yx2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD12CD,得到新抛物线y1,y1交y轴于点N如果在y1的对
4、称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标【例5】(2022镇江)一次函数yx+1的图象与x轴交于点A,二次函数yax2+bx+c(a0)的图象经过点A、原点O和一次函数yx+1图象上的点B(m,)(1)求这个二次函数的表达式;(2)如图1,一次函数yx+n(n,n1)与二次函数yax2+bx+c(a0)的图象交于点C(x1,y1)、D(x2,y2)(x1x2),过点C作直线l1x轴于点E,过点D作直线l2x轴,过点B作BFl2于点Fx1 ,x2 (分别用含n的代数式表示);证明:AEBF;(3)如图2,二次函数ya(xt)2+2的
5、图象是由二次函数yax2+bx+c(a0)的图象平移后得到的,且与一次函数yx+1的图象交于点P、Q(点P在点Q的左侧),过点P作直线l3x轴,过点Q作直线l4x轴,设平移后点A、B的对应点分别为A、B,过点A作AMl3于点M,过点B作BNl4于点NAM与BN相等吗?请说明你的理由;若AM+3BN2,求t的值一解答题(共20题)1(2022秋临海市月考)如图,以A(3,0),为顶点的抛物线交y轴于点B(0,4)(1)求此抛物线的函数解析式(2)点C(7,4)是否也在这个抛物线上?(3)你能否通过左右平移该抛物线,使平移后的抛物线经过点C(7,4)?若能,请写出平移的方法2(2022秋江夏区月考
6、)已知抛物线yx2+bx+c经过点A(1,2)(1)抛物线顶点位于y轴右侧且纵坐标为6求抛物线的解析式如图1,直线yx+4与抛物线交于B、C两点,P为线段BC上一点,过P作PMy轴交抛物线于M点若PM3,求P点的坐标(2)将抛物线平移,使点A的对应点为A(m+1,b+4),其中m2若平移后的抛物线经过点N(2,1),平移后的抛物线顶点恰好落在直线yx+5上,求b的值3(2022湖里区二模)抛物线yax2+bx+1与x轴仅有一个交点A(m,0),与y轴交于点B,过点B的直线BCAB交x轴于点M,BCkAB(1)用含b的式子表示m;(2)若四边形AMBE是平行四边形,且点E在抛物线上,求抛物线的解
7、析式;(3)已知点C在抛物线上,且m0,k4,将抛物线yax2+bx+1平移,若点M在平移后的抛物线上,判断平移后的抛物线是否经过点C?若经过,请说明抛物线平移的方式;若不经过,请说明理由4(2022上海)在平面直角坐标系xOy中,抛物线yx2+bx+c过点A(2,1),B(0,3)(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m0)如果SOBP3,设直线xk,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;点P在原抛物线上,新抛物线交y轴于点Q,且BPQ120,求点P的坐标5(2022青浦区模拟)如图,在平面直角坐标系xOy中,抛物线yx2+bx+c与
8、x轴交于点A(1,0)和点B(3,0),与y轴交于点C(1)求该抛物线的表达式及点C的坐标;(2)点P为抛物线上一点,且在x轴下方,联结PA当PABACO时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向平移,平移后点P的对应点为点Q,当AQ平分PAC时,求抛物线平移的距离6(2022凉山州)在平面直角坐标系xOy中,已知抛物线yx2+bx+c经过点A(1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90,点C落在抛物线上的点P处(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落
9、在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由7(2022雁塔区校级模拟)已知抛物线L1:yax2+bx+c(a0)与x轴交于点A(1,0),点B(3,0),与y轴交于点C(0,3)(1)求抛物线L的表达式;(2)若点P是直线yx+1上的一个动点,将抛物线L进行平移得到抛物线L,点B的对应点为点Q,是否存在以A、B、P、Q四个点为顶点的四边形是菱形?若存在,求出抛物线的平移方式;若不存在,请说明理由8(2022渭滨区一模)在平面直角坐标系xOy中,已知抛物线y+bx2+c经过点A(1,0)和点B(0,),顶点为C,点D在其对称轴上且位于
10、点C下方,将线段DC绕点D按顺时针方向旋转90,点C落在抛物线上的点P处(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标9(2021秋普兰店区期末)抛物线yax2+4(a0)与x轴交于A,B两点(A点在B点的左侧),AB4,点P(2,1)位于第一象限(1)求抛物线的解析式;(2)若点M在抛物线上,且使MAP45,求点M的坐标;(3)将(1)中的抛物线平移,使它的顶点在直线yx+4上移动,当平移后的抛物线与线段AP只有一个公共点时,求抛物线顶点横坐标t
11、的取值范围10(2022碑林区校级四模)在平面直角坐标系xOy中,抛物线yx2+mx+n与x轴交于点A,B(A在B的左侧)(1)若抛物线的对称轴为直线x3,AB4求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x轴正半轴交于点C,记平移后的抛物线顶点为P,若OCP是等腰直角三角形,求点P的坐标11(2022静安区二模)在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OBAB(如图所示),二次函数的图象经过点O、A、B三点,顶点为D(1)求点B与点D的坐标;(2)求二次函数图象的对称轴与线段AB的交点E的坐标;(3)二次函数的图象经过平移后,点A落在
12、原二次函数图象的对称轴上,点D落在线段AB上,求图象平移后得到的二次函数解析式12(2022富阳区二模)设二次函数y(xa)(xa+2),其中a为实数(1)若二次函数的图象经过点P(2,1),求二次函数的表达式;(2)把二次函数的图象向上平移k个单位,使图象与x轴无交点,求k的取值范围;(3)若二次函数的图象经过点A(m,t),点B(n,t),设|mn|d(d2),求t的最小值13(2022宁波模拟)已知二次函数yx2+xm的部分图象如图所示(1)求该二次函数图象的对称轴,并利用图象直接写出一元二次方程x2+xm0的解(2)向上平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的
13、表达式14(2022宁波模拟)已知二次函数yx22mx+m21(m为常数)的图象与x轴交于A,B两点,顶点为C(1)若把二次函数图象向下平移3个单位恰好过原点,求m的值(2)若P(m3,y1),Q(m+2,y2)在已知的二次函数图象上,比较y1,y2的大小;求ABC的面积15(2022吴兴区一模)如图已知二次函数yx2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作ABx轴,交y轴于点D,交二次函数yx2+bx+c的图象于点B,连接BC(1)求该二次函数的表达式及点M的坐标:(2)若将该二次函数图象向上平移m(m0)个单位,使平移后得到的二次函数图象的顶
14、点落在ABC的内部(不包括ABC的边界),求m的取值范围;(3)若E为y轴上且位于点C下方的一点,P为直线AC上一点,在第四象限的抛物线上是否存在一点Q,使以C、E、P、Q为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由16(2022南宁模拟)已知关于x的二次函数yax2+2ax+c(a0),且c3a(1)若a1,求该二次函数的解析式和顶点坐标;(2)在(1)的条件下,求出下表中k、n的值,并在以下平面直角坐标系中,用描点法画出该二次函数的图象;根据图象回答:当0x2时,直接写出y的最小值(3)当3x0时,y有最小值4,若将该二次函数的图象向右平移m(m1)个单位长度,平
15、移后得到的图象所对应的函数y在3x0的范围内有最小值3,求函数yax+m的解析式x101y4kn17(2022房山区二模)在平面直角坐标系xOy中,点A(2,1)在二次函数yx2(2m+1)x+m的图象上(1)直接写出这个二次函数的解析式;(2)当nx1时,函数值y的取值范围是1y4n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O设平移后的图象对应的函数表达式为ya(xh)2+k,当x2时,y随x的增大而减小,求k的取值范围18(2022洞头区模拟)如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与y轴交于点A(0,3),交x轴于点B(3,0)(1)求抛物线的解析式,
16、并根据该图象直接写出y3时x的取值范围(2)将线段OB向左平移m个单位,向上平移n个单位至OB(m,n均为正数),若点O,B均落在此二次函数图象上,求m,n的值19(2022桥西区校级模拟)如图,抛物线,点Q为顶点(1)无论a为何值,抛物线L总过一个定点为 ;(2)若抛物线的对称轴为直线x1求该抛物线L的表达式和点Q的坐标;将抛物线L向下平移k(k0)个单位长度,使点Q落在点A处,平移后的抛物线与y轴交于点B若QAQB,求k的值;(3)当a2时,点M(m,n)为抛物线上一点,点M到y轴的距离不超过2,直接写出n的取值范围20(2022宜宾)如图,抛物线yax2+bx+c与x轴交于A(3,0)、
17、B(1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值参考答案解析【例1】(2022湖北)如图,在平面直角坐标系中,已知抛物线yx22x3的顶点为A,与y轴交于点C,线段CBx轴,交该抛物线于另一点B(1)求点B的坐标及直线AC的解析式;(2)当二次函数yx22x3的自变量x满足mxm+2时,
18、此函数的最大值为p,最小值为q,且pq2,求m的值;(3)平移抛物线yx22x3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围【分析】(1)求出A、B、C三点坐标,再用待定系数法求直线AC的解析式即可;(2)分四种情况讨论:当m1时,pq(m+2)22(m+2)3m2+2m+32,解得m(舍);当m+21,即m1,pqm22m3(m+2)2+2(m+2)+32,解得m(舍);当m1m+1,即0m1,pq(m+2)22(m+2)3+42,解得m1或m1(舍);当m+11m+2,即1m0,pqm22m3+42,解得
19、m+1(舍)或m+1;(3)分两种情况讨论:当抛物线向左平移h个单位,则向上平移h个单位,平移后的抛物线解析式为y(x1+h)24+h,求出直线BA的解析式为yx5,联立方程组,由0时,解得h,此时抛物线的顶点为(,),此时平移后的抛物线与射线BA只有一个公共点;当抛物线向右平移k个单位,则向下平移k个单位,平移后的抛物线解析式为y(x1k)24k,当抛物线经过点B时,此时抛物线的顶点坐标为(4,7),此时平移后的抛物线与射线BA只有一个公共点;当抛物线的顶点为(1,4)时,平移后的抛物线与射线BA有两个公共点,由此可求解【解答】解:(1)yx22x3(x1)24,顶点A(1,4),令x0,则
20、y3,C(0,3),CBx轴,B(2,3),设直线AC解析式为ykx+b,解得,yx3;(2)抛物线yx22x3的对称轴为直线x1,当m1时,xm时,qm22m3,xm+2时,p(m+2)22(m+2)3,pq(m+2)22(m+2)3m2+2m+32,解得m(舍);当m+21,即m1,xm时,pm22m3,xm+2时,q(m+2)22(m+2)3,pqm22m3(m+2)2+2(m+2)+32,解得m(舍);当m1m+1,即0m1,x1时,q4,xm+2时,p(m+2)22(m+2)3,pq(m+2)22(m+2)3+42,解得m1或m1(舍);当m+11m+2,即1m0,x1时,q4,xm
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 压轴 专题 二次 函数 平移 变换 综合 问题 答案 解析

链接地址:https://www.77wenku.com/p-238718.html