2023年中考数学压轴专题:二次函数与面积最值定值问题(含答案解析)
《2023年中考数学压轴专题:二次函数与面积最值定值问题(含答案解析)》由会员分享,可在线阅读,更多相关《2023年中考数学压轴专题:二次函数与面积最值定值问题(含答案解析)(82页珍藏版)》请在七七文库上搜索。
1、二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。有时也要根据题目的动点问题产生解的不确定性或多样性。解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法. 面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根二是先假设关系存在,再列方程,后根
2、据方程的解验证假设是否正确 解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等平行线间的距离处处相等如图5,同底三角形的面积比等于高的比如图6,同高三角形的面积比等于底的比图4 图5 图6【例1】(2022青海)如图1,抛物线yx2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(1)求该抛物线的解析式;(2)若点
3、E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足SPAB6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由(请在图2中探讨)【例2】(2022随州)如图1,平面直角坐标系xOy中,抛物线yax2+bx+c(a0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x1,且OAOC,P为抛物线上一动点(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使
4、四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由【例3】(2022成都)如图,在平面直角坐标系xOy中,直线ykx3(k0)与抛物线yx2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B(1)当k2时,求A,B两点的坐标;(2)连接OA,OB,AB,BB,若BAB的面积与OAB的面积相等,求k的值;(3)试探究直线AB是否经过某一定点若是,请求出该定点的坐标;若不是,请说明理由【例4】(2022岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:yx2+bx+c经过点A(3,0)和点B(1,0)(1)求抛物线F1的解析式;(2)如图2,作抛物线F
5、2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧)求点C和点D的坐标;若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值1(2022金坛区二模)如图,在平面直角坐标系xOy中,二次函数yx2+bx2的图象与x轴交于点A(3,0),B(点B在点A左侧),与y轴交于点C,点D与点C关于x轴对称,作直线AD(1)填空:b ;(2)将AOC平移到EFG(点E,F,G依次与A,O,C对应),若
6、点E落在抛物线上且点G落在直线AD上,求点E的坐标;(3)设点P是第四象限抛物线上一点,过点P作x轴的垂线,垂足为H,交AC于点T若CPT+DAC180,求AHT与CPT的面积之比2(2022罗城县模拟)如图,已知抛物线yax2+b经过点A(2,6),B(4,0),其中E、F(m,n)为抛物线上的两个动点(1)求抛物线的解析式并写出其顶点坐标;(2)若C(x,y)是抛物线上的一点,当4x2且SABC最大时,求点C的坐标;(3)若EFx轴,点A到EF的距离大于8个单位长度,求m的取值范围3(2022老河口市模拟)在平面直角坐标系中,抛物线yx2+2mx的顶点为A,直线l:yx1与x轴交于点B(1
7、)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C求抛物线的解析式及点C的坐标;点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t当EMBD时,求t的取值范围;(2)过点A作APl于点P,作AQl交抛物线于点Q,连接PQ,设APQ的面积为S直接写出S关于m的函数关系式;S的最小值及S取最小值时m的值4(2022新吴区二模)如图,已知抛物线y+bx过点A(4,0)、顶点为B,一次函数yx+2的图象交y轴于M,对称轴与x轴交于点H(1)求抛物线的表达式;(2)已知P是抛物线上一动点,点M关于AP的对称点为N若点N恰好落在抛物线
8、的对称轴上,求点N的坐标;请直接写出MHN面积的最大值5(2022开福区校级二模)如图,抛物线y(x+1)(xa)(其中a1)与x轴交于A、B两点,交y轴于点C(1)直接写出OCA的度数和线段AB的长(用a表示);(2)如图,若a2,点D在抛物线的对称轴上,DBDC,求BCD与ACO的周长之比;(3)如图,若a3,动点P在线段OA上,过点P作x轴的垂线分别与AC交于点M,与抛物线交于点N试问:抛物线上是否存在点Q,使得PQN与BPM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由6(2022官渡区二模)抛物线交x轴于A、B两点,交y轴正半轴于点C,对称轴为直线(
9、1)如图1,若点C坐标为(0,2),则b ,c ;(2)若点P为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP面积最大时,点P坐标和四边形ABCP的最大面积;(3)如图2,点D为抛物线的顶点,过点O作MNCD别交抛物线于点M,N,当MN3CD时,求c的值7(2022徐州二模)如图,四边形ABCD中,已知ABCD,动点P从A点出发,沿边AB运动到点B,动点Q同时由A点出发,沿折线ADDCCB运动点B停止,在移动过程中始终保持PQAB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,APQ的面积为y,已知y与x之间函数关系如图,其中MN为线段,曲线OM,NK为抛物线的一部
10、分,根据图中信息,解答下列问题:(1)图AB ,BC ;(2)分别求线段MN,曲线NK所对应的函数表达式;(3)当x为何值,APQ的面积为6?8(2022茌平区一模)如图,已知二次函数的图象交x轴于点B(8,0),C(2,0),交y轴点A(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PDAC,交AB于点D,试猜想PAD的面积有最大值还是最小值,并求出此时点P的坐标(3)连接OD,在(2)的条件下,求出的值9(2022碑林区校级模拟)抛物线W1:ya(x+)2与x轴交于A(5,0)和点B(1)求抛物线W1的函数表达式;(2)将抛物线W1关于点
11、M(1,0)对称后得到抛物线W2,点A、B的对应点分别为A,B,抛物线W2与y轴交于点C,在抛物线W2上是否存在一点P,使得SPABSPAC,若存在,求出P点坐标,若不存在,请说明理由10(2021秋钦北区期末)如图,抛物线yax2+bx+6与直线yx+2相交于A(,)、B(4,6)两点,点P是线段AB上的动点(不与A、B两点重合),过点P作PCx轴于点D,交抛物线于点C,点E是直线AB与x轴的交点(1)求抛物线的解析式;(2)当点C是抛物线的顶点时,求BCE的面积;(3)是否存在点P,使得BCE的面积最大?若存在,求出这个最大值;若不存在,请说明理由11(2022保定一模)如图,在平面直角坐
12、标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t0),抛物线yx2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,5),D(4,0)(1)求c,b(含t的代数式表示);(2)当4t5时,设抛物线分别与线段AB,CD交于点M,N在点P的运动过程中,你认为AMP的大小是否会变化?若变化,说明理由;若不变,求出AMP的值;求MPN的面积S与t的函数关系式并求t为何值时,MPN的面积为12(2022黄石模拟)如图,已知抛物线与x轴交于A(2,0),B两点,与y轴交于点C(0,4),直线与x轴交于点D,点P是抛物线上的一动点,过点P作PEx轴,垂足为E,
13、交直线l于点F(1)求该抛物线的表达式;(2)点P是抛物线上位于第三象限的一动点,设点P的横坐标是m,四边形PCOB的面积是S求S关于m的函数解析式及S的最大值;点Q是直线PE上一动点,当S取最大值时,求QOC周长的最小值及FQ的长13(2022哈尔滨模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线yax22ax+3与x轴的负半轴交于点A,与x的正半轴交于点B,与y轴正半轴交于点C,OB2OA(1)求抛物线的解析式;(2)点D是第四象限内抛物线上一点,连接AD交y轴于点E,过C作CFy轴交抛物线于点F,连接DF,设四边形DECF的面积为S,点D的横坐标的t,求S与t的函数解析式;(3)在
14、(2)的条件下,过F作FMy轴交AD于点M,连接CD交FM于点G,点N是CE上一点,连接MN、EG,当BAD+2AMN90,MN:EG,求点D的坐标14(2022利川市模拟)如图,等腰直角三角形OAB的直角顶点O在坐标原点,直角边OA,OB分别在y轴和x轴上,点C的坐标为(3,4),且AC平行于x轴(1)求直线AB的解析式;(2)求过B,C两点的抛物线yx2+bx+c的解析式;(3)抛物线yx2+bx+c与x轴的另一个交点为D,试判定OC与BD的大小关系;(4)若点M是抛物线上的动点,当ABM的面积与ABC的面积相等时,求点M的坐标15(2021襄阳)如图,直线yx+1与x,y轴分别交于点B,
15、A,顶点为P的抛物线yax22ax+c过点A(1)求出点A,B的坐标及c的值;(2)若函数yax22ax+c在3x4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M设BMP的面积为S直接写出S关于a的函数关系式及a的取值范围;结合S与a的函数图象,直接写出S时a的取值范围16(2021辽宁)如图,抛物线yx2+bx+c与x轴交于点A和点C(1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PDx轴于点D,交AB于点E(1)求抛物线的解析式;(2)如图1,作PFPD于点P,使PFOA,以PE,PF为邻边作矩形PEGF当矩形PE
16、GF的面积是BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围17(2021贺州)如图,抛物线yx2+bx+c与x轴交于A、B两点,且A(1,0),对称轴为直线x2(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C当CAB45时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(xP,yP),当1xPa,1a5时,求PCD面积的最大值(可含a表示)18(2021常德)如图,在平面直角坐标系xOy中,平行四边形ABCD
17、的AB边与y轴交于E点,F是AD的中点,B、C、D的坐标分别为(2,0),(8,0),(13,10)(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当PBQ的面积最大时,求P的坐标19(2021福建)已知抛物线yax2+bx+c与x轴只有一个公共点(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(2,1),P2(2,1),P3(2,1)中恰有两点在抛物线上求抛物线的解析式;设直线l:ykx+1与抛物线交于M,N两点,点A在直线y1上,且MAN90,
18、过点A且与x轴垂直的直线分别交抛物线和l于点B,C求证:MAB与MBC的面积相等20(2021柳州)在平面直角坐标系xOy中,已知抛物线:yax2+bx+c交x轴于A(1,0),B(3,0)两点,与y轴交于点C(0,)(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BEOD,垂足为E,若BE2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记BMN的面积为S1,ABN的面积为S2,求的最大值21(2021聊城)如图,抛物线yax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,
19、0),C(0,2),连接AC,BC(1)求抛物线的表达式和AC所在直线的表达式;(2)将ABC沿BC所在直线折叠,得到DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,BPQ的面积记为S1,ABQ的面积记为S2,求的值最大时点P的坐标22(2020贺州)如图,抛物线ya(x2)22与y轴交于点A(0,2),顶点为B(1)求该抛物线的解析式;(2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1y2,求P,Q两点的坐标;(3)在(2)的条件下
20、,若点C是线段QB上一动点,经过点C的直线yx+m与y轴交于点D,连接DQ,DB,求BDQ面积的最大值和最小值 【例1】(2022青海)如图1,抛物线yx2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(1)求该抛物线的解析式;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足SPAB6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由(请在图2中探讨)【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)利用二次函数的性质,可求出抛物线顶点F的坐标及抛物线的对称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 压轴 专题 二次 函数 面积 最值定值 问题 答案 解析

链接地址:https://www.77wenku.com/p-238716.html