欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教 >
    幼教
    幼儿教师文档 幼儿语言 幼儿数学 幼儿英语 幼儿科学 幼儿体育 幼儿艺术 幼儿美术 幼儿音乐 幼儿健康 幼儿社会 幼儿综合
  • 小学 >
    小学
    小学语文 小学数学 小学英语 小学科学 小学信息 道德与法治(思品) 小学班会 小学美术 小学音乐 体育与健康 综合实践 心理健康 书法写字
  • 初中 >
    初中
    初中语文 初中数学 初中英语 初中科学 初中物理 初中化学 初中生物 道德与法治 初中历史 初中地理 历史与社会 初中信息 初中体育 初中美术 初中音乐 初中班会 初中综合
  • 高中 >
    高中
    高中语文 高中数学 高中英语 高中物理 高中化学 高中生物 高中政治 高中历史 高中地理 高中信息 高中美术 高中音乐 高中体育 高中综合
  • 职教 >
    职教
    职教语文 职教数学 职教英语 综合理科 综合文科 机械制造 电子电工 电脑技术 财经司法 旅游商贸 医药护理 汽车修理 艺术服装 农林种植 学前教育 综合专业
  • 高教 >
    高教
    公共课程 大学理工 经济管理 市场营销 医学课程 机械电子 建筑工程 金融财会 环境地理 社会科学 创新技术 电子通讯 哲学课程 自然科学 法律法规 人力资源 石油化工 农业课程 环境工程 综合课程
  • 办公 >
    办公
    办公管理 党政资料 心得体会 演讲致辞 文秘写作 协议合同 应用文书 PPT模版
  • 资格考试 >
    资格考试
    教师考试 自学考试 计算机考试 公务员考试 财会类考试 建筑工程考试 医药类考试 考研资料
  • 英语等级 >
    英语等级
    英语四级 英语六级 英语八级
  • 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
     

    2018年大庆市中考数学试卷含答案解析.doc

    • 资源ID:3326       资源大小:525.00KB        全文页数:28页
    • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:0金币 【人民币0元】
    快捷注册下载 游客一键下载
    会员登录下载
    三方登录下载: QQ登录   微博登录  
    下载资源需要0金币 【人民币0元】
    邮箱/手机:
    温馨提示:
    系统会自动生成账号(用户名和密码都是您填写的邮箱或者手机号),方便下次登录下载和查询订单;
    支付说明:
    本站最低充值10金币,下载本资源后余额将会存入您的账户,您可在我的个人中心查看。
    验证码:   换一换

    加入VIP,免费下载
     
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

    2018年大庆市中考数学试卷含答案解析.doc

    p2018 年黑龙江省大庆市中考数学试卷一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1. (3.00 分) 2cos60( nbsp;)A.1 B. C. D.2. (3.00 分)一种花粉颗粒直径约为 0.0000065 米,数字 0.0000065 用科学记数法表示为( nbsp;)A.0.65 10﹣5 B.6510 ﹣7 C.6.5 10﹣6 D.6.510 ﹣53. (3.00 分)已知两个有理数 a,b ,如果 ab<0 且 ab>0,那么( nbsp;)A.a >0 ,b>0B.a <0 ,b>0C. a、b 同号D.a、b 异号,且正数的绝对值较大4. (3.00 分)一个正 n 边形的每一个外角都是 36,则 n( nbsp;)A.7 B.8 C.9 D.105. (3.00 分)某商品打七折后价格为 a 元,则原价为( nbsp; )A.a 元 B. a 元 C.30a 元 D. a 元6. (3.00 分)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“ 创” 字所在的面相对的面上标的字是( nbsp;)A.庆 B.力 C.大 D.魅7. (3.00 分)在同一直角坐标系中,函数 y 和 ykx﹣3 的图象大致是( nbsp;)A. B. C. D.8. (3.00 分)已知一组数据92,94,98,91,95 的中位数为 a,方差为 b,则 ab( nbsp;)A.98 B.99 C.100 D.1029. (3.00 分)如图, ∠B ∠C90 ,M 是 BC 的中点, DM 平分∠ADC ,且∠ADC110,则∠MAB( nbsp; )A.30 B.35 C.45 D.6010. (3.00 分)如图,二次函数 yax2bxc 的图象经过点 A(﹣1,0) 、点B(3 ,0) 、点 C(4,y 1) ,若点 D(x 2,y 2)是抛物线上任意一点,有下列结论①二次函数 yax2bxc 的最小值为﹣4a;②若﹣1≤x 2≤4,则 0≤y 2≤5a;③若 y2>y 1,则 x2>4;④一元二次方程 cx2bxa0 的两个根为﹣ 1 和其中正确结论的个数是( nbsp;)A.1 B.2 C.3 D.4二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)11. (3.00 分)已知圆柱的底面积为 60cm2,高为 4cm,则这个圆柱体积为 nbsp; nbsp; cm3.12. (3.00 分)函数 y 的自变量 x 取值范围是 nbsp; nbsp; .13. (3.00 分)在平面直角坐标系中,点 A 的坐标为( a,3) ,点 B 的坐标是(4,b) ,若点 A 与点 B 关于原点 O 对称,则 ab nbsp; nbsp; .14. (3.00 分)在 △ABC 中,∠C90,AB10 ,且 AC6,则这个三角形的内切圆半径为 nbsp; nbsp; .15. (3.00 分)若 2x5,2 y3,则 22xy nbsp; nbsp; .16. (3.00 分)已知 ,则实数 A nbsp; nbsp; .17. (3.00 分)如图,在 Rt△ABC 中,∠ACB90,ACBC2 ,将 Rt△ABC 绕点A 逆时针旋转 30后得到 Rt△ADE,点 B 经过的路径为弧 BD,则图中阴影部分的面积为 nbsp; nbsp; .18. (3.00 分)已知直线 ykx(k≠0)经过点(12,﹣5) ,将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为 6 的⊙O 相交(点 O 为坐标原点) ,则 m 的取值范围为 nbsp; nbsp; .三、解答题(本大题共 10 小题,共 66 分)19. (4.00 分)求值( ﹣1) 2018|1﹣ |﹣20. (4.00 分)解方程 ﹣ 1.21. (5.00 分)已知 x2﹣y212,xy3,求 2x2﹣2xy 的值.22. (6.00 分)如图,一艘轮船位于灯塔 P 的北偏东 60方向,与灯塔 P 的距离为 80 海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东45方向的 B 处,求此时轮船所在的 B 处与灯塔 P 的距离. (参考数据≈2.449 ,结果保留整数)23. (7.00 分)九年级一班开展了“ 读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整的频数分布表和扇形统计图.类别 nbsp;频数(人数) nbsp;频率小说 16 nbsp;戏剧 4散文 a nbsp;其他 b合计 nbsp;1根据图表提供的信息,解答下列问题(1)直接写出 a,b,m 的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的 2 人恰好乙和丙的概率.24. (7.00 分)如图,在 Rt△ABC 中,∠ACB90,D、E 分别是 AB、AC 的中点,连接 CD,过 E 作 EF∥DC 交 BC 的延长线于 F.(1)证明四边形 CDEF 是平行四边形;(2)若四边形 CDEF 的周长是 25cm,AC 的长为 5cm,求线段 AB 的长度.25. (7.00 分)某学校计 划购买排球、篮球,已知购买 1 个排球与 1 个篮球的总费用 为 180 元;3 个排球与 2 个篮球的总费用为 420 元.(1)求购买 1 个排球、1 个篮球的费用分别是多少元(2)若该学校计划购买此类排球和篮球共 60 个,并且篮球的数量不超过排球数量的 2倍.求至 少需要购买多少个排球并求出购买排球、篮球总费用的最大值26. (8.00 分)如图, A(4,3)是反比例函数 y 在第一象限图象上一点,连接 OA,过 A 作 AB∥x 轴,截取 ABOA(B 在 A 右侧) ,连接 OB,交反比例函数y 的图象于点 P.(1)求反比例函数 y 的表达式;(2)求点 B 的坐标;(3)求△OAP 的面积.27. (9.00 分)如图, AB 是⊙O 的直径,点 E 为线段 OB 上一点(不与 O,B 重合) ,作 EC⊥ OB,交⊙O 于点 C,作直径 CD,过点 C 的切线交 DB 的延长线于点 P,作 AF⊥PC 于点 F,连接 CB.(1)求证AC 平分∠FAB;(2)求证BC 2CECP;(3)当 AB4 且 时,求劣弧 的长度.28. (9.00 分)如图,抛物线 yx2bxc 与 x 轴交于 A、B 两点,B 点坐标为(4,0) ,与 y 轴交于点 C(0,4) .(1)求抛物线的解析式;(2)点 P 在 x 轴下方的抛物线上,过点 P 的直线 yxm 与直线 BC 交于点 E,与 y 轴交于点 F,求 PEEF 的最大值;(3)点 D 为抛物线对称轴上一点.①当△BCD 是以 BC 为直角边的直角三角形时,直接写出点 D 的坐标;②若△BCD 是锐角三角形,直接写出点 D 的纵坐标 n 的取值范围.2018 年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1. (3.00 分) 2cos60( nbsp;)A.1 B. C. D.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解2cos602 1.故选A.2. (3.00 分)一种花粉颗粒直径约为 0.0000065 米,数字 0.0000065 用科学记数法表示为( nbsp;)A.0.65 10﹣5 B.6510 ﹣7 C.6.5 10﹣6 D.6.510 ﹣5【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.【解答】解数字 0.0000065 用科学记数法表示为 6.510﹣6.故选C.3. (3.00 分)已知两个有理数 a,b ,如果 ab<0 且 ab>0,那么( nbsp;)A.a >0 ,b>0B.a <0 ,b>0C. a、b 同号D.a、b 异号,且正数的绝对值较大【分析】先由有理数的乘法法则,判断出 a,b 异号,再用有理数加法法则即可得出结论.【解答】解∵ab<0,∴a ,b 异号,∵a b>0 ,∴正数的绝对值较大,故选D.4. (3.00 分)一个正 n 边形的每一个外角都是 36,则 n( nbsp;)A.7 B.8 C.9 D.10【分析】由多边形的外角和为 360结合每个外角的度数,即可求出 n 值,此题得解.【解答】解∵一个正 n 边形的每一个外角都是 36,∴n3603610.故选D.5. (3.00 分)某商品打七折后价格为 a 元,则原价为( nbsp; )A.a 元 B. a 元 C.30a 元 D. a 元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解设该商品原价为x 元,∵某商品打七折后价格为 a 元,∴原价为0.7xa ,则 x a(元) .故选B.6. (3.00 分)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“ 创” 字所在的面相对的面上标的字是( nbsp;)A.庆 B.力 C.大 D.魅【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面.故选A.7. (3.00 分)在同一直角坐标系中,函数 y 和 ykx﹣3 的图象大致是( nbsp;)A. B. C. D.【分析】根据一次函数和反比例函数的特点,k≠ 0,所以分 k>0 和 k<0 两种情况讨论.当两函数系数 k 取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解分两种情况讨论①当 k>0 时,ykx ﹣3 与 y 轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当 k<0 时,ykx ﹣3 与 y 轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选B.8. (3.00 分)已知一组数据92,94,98,91,95 的中位数为 a,方差为 b,则 ab( nbsp;)A.98 B.99 C.100 D.102【分析】首先求出该组数据的中位数和方差,进而求出答案.【解答】解数据92,94,98,91,95 从小到大排列为91,92,94 , 95,98,处于中间位置的数是 94,则该组数据的中位数是 94,即 a94,该组数据的平均数为 [9294989195]94,其方差为 [(92﹣94) 2(94﹣94) 2(98 ﹣94) 2( 91﹣94) 2(95﹣ 94) 2]6,所以 b6所以 ab946100.故选C.9. (3.00 分)如图, ∠B ∠C90 ,M 是 BC 的中点, DM 平分∠ADC ,且∠ADC110,则∠MAB( nbsp; )A.30 B.35 C.45 D.60【分析】作 MN⊥AD 于 N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB ∠DAB,计算即可.【解答】解作 MN⊥AD 于 N,∵∠B ∠C90,∴AB∥CD,∴∠DAB180 ﹣∠ADC70 ,∵DM 平分∠ ADC,MN ⊥AD,MC⊥CD,∴MNMC,∵M 是 BC 的中点,∴MCMB,∴MNMB,又 MN⊥AD , MB⊥AB,∴∠MAB ∠DAB35 ,故选B.10. (3.00 分)如图,二次函数 yax2bxc 的图象经过点 A(﹣1,0) 、点B(3 ,0) 、点 C(4,y 1) ,若点 D(x 2,y 2)是抛物线上任意一点,有下列结论①二次函数 yax2bxc 的最小值为﹣4a;②若﹣1≤x 2≤4,则 0≤y 2≤5a;③若 y2>y 1,则 x2>4;④一元二次方程 cx2bxa0 的两个根为﹣ 1 和其中正确结论的个数是( nbsp;)A.1 B.2 C.3 D.4【分析】利用交点式写出抛物线解析式为 yax2﹣2ax﹣3a,配成顶点式得ya(x﹣1) 2﹣4a,则可对①进行判断;计算 x4 时,ya515a ,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于 b﹣2a,c﹣3a ,则方程 cx2bxa0 化为﹣3ax 2﹣2axa0,然后解方程可对④进行判断.【解答】解抛物线解析式为 ya(x 1) (x﹣3) ,即 yax2﹣2ax﹣3a,∵ya(x ﹣1) 2﹣4a,∴当 x1 时,二次函数有最小值﹣ 4a,所以①正确;当 x4 时,ya515a,∴当﹣1≤x 2≤4,则﹣4a≤y 2≤5a,所以②错误;∵点 C(1,5a)关于直线 x1 的对称点为(﹣ 2,﹣5a ) ,∴当 y2>y 1,则 x2>4 或 x<﹣2,所以③错误;∵b﹣2a,c﹣3a,∴方程 cx2bxa0 化为﹣3ax 2﹣2axa0,整理得 3x22x﹣10,解得 x1﹣1,x 2 ,所以④正确.故选B.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)11. (3.00 分)已知圆柱的底面积为 60cm2,高为 4cm,则这个圆柱体积为 240 cm 3.【分析】根据圆柱体积底面积 高,即可求出结论.【解答】 解VSh604240(cm 3) .故答案为240.12. (3.00 分)函数 y 的自变量 x 取值范围是 x≤3 .【分析】根据二次根式的性质,被开方数大于等于 0 可知3﹣x≥0,解得 x 的范围.【解答】解根据题意得3﹣x≥0,解得x≤3.故答案为x≤3.13. (3.00 分)在平面直角坐标系中,点 A 的坐标为( a,3) ,点 B 的坐标是(4,b) ,若点 A 与点 B 关于原点 O 对称,则 ab 12 .【分析】直接利用关于原点对称点的性质得出 a,b 的值,进而得出答案.[ 来源学, 科,网]【解答】解∵点 A 的坐标为(a,3) ,点 B 的坐标是(4,b ) ,点 A 与点 B 关于原点 O 对称,∴a﹣4,b ﹣3,则 ab12.故答案为12.14. (3.00 分)在 △ABC 中,∠C90,AB10 ,且 AC6,则这个三角形的内切圆半径为 2 .【分析】先 利用勾股定理计算出 BC8,然后利用直角三角形内切圆的半径(a、b 为直角边, c 为斜边)进行计算.【解答】解∵∠C90 , AB10,AC6,∴BC 8,∴这个三角形的内切圆半径 2.故答案为 2.15. (3.00 分)若 2x5,2 y3,则 22xy 75 .【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案.【解答】解∵2 x5,2 y3,∴2 2xy(2 x) 22y52375.故答案为75.16. (3.00 分)已知 ,则实数 A 1 .【分析】先计算出 ,再根据已知等式得出 A、B 的方程组,解之可得 .【解答】解 ,∵ ,∴ ,解得 ,故答案为1.17. (3.00 分)如图,在 Rt△ABC 中,∠ACB90,ACBC2 ,将 Rt△ABC 绕点A 逆时针旋转 30后得到 Rt△ADE,点 B 经过的路径为弧 BD,则图中阴影部分的面积为 nbsp; nbsp;.【分析】先根据勾股定理得到 AB2 ,再根据扇形的面积公式计算出 S 扇形ABD,由旋转的性质得到 Rt△ADE≌Rt△ACB ,于是 S 阴影部分 S△ADE S 扇形 ABD﹣S△ABCS 扇形 ABD.【解答】解∵∠ACB90,ACBC2,∴AB2 ,∴S 扇形 ABD .又∵Rt△ABC 绕 A 点逆时针旋转 30后得到 Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S 阴影部分 S△ADE S 扇形 ABD﹣S△ABC S 扇形 ABD .故答案为 .18. (3.00 分)已知直线 ykx(k≠0)经过点(12,﹣5) ,将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为 6 的⊙O 相交(点 O 为坐标原点) ,则 m 的取值范围为 m< nbsp; .【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解把点(12,﹣5)代入直线 ykx 得,﹣512k,∴k﹣ ;由 y﹣ x 平移平移 m(m>0)个单位后得到的直线 l 所对应的函数关系式为y﹣ xm(m>0) ,设直线 l 与 x 轴、y 轴分别交于点 A、B, (如下图所示)当 x0 时,ym;当 y0 时, x m,∴A( m,0) ,B(0,m) ,即 OA m, O Bm;在 Rt△OAB 中,AB ,过点 O 作 OD⊥AB 于 D,∵S △ABO ODAB OAOB,∴ OD ,∵m>0,解得 OD ,由直线与圆的位置关系可知 <6,解得 m< .故答案为m< .三、解答题(本大题共 10 小题,共 66 分)19. (4.00 分)求值( ﹣1) 2018|1﹣ |﹣【分析】直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解原式1 ﹣1﹣2 ﹣2.20. (4.00 分)解方程 ﹣ 1.【分析】方程两边都乘以 x(x 3)得出方程 x﹣12x2,求出方程的解,再代入x(x 3)进行检验即可.【解答】解两边都乘以 x(x 3) ,得x 2﹣(x 3)x(x3) ,解得x﹣ , [来源Z。xx 。k.Com]检验当 x﹣ 时,x (x3)﹣ ≠0,所以分式方程的解为 x﹣ .21. (5.00 分)已知 x2﹣y212,xy3,求 2x2﹣2xy 的值.【分析】先求出 x﹣y4,进而求出 2x7,而 2x2﹣2xy2x(x﹣y) ,代入即可得出结论.【解答】解∵x 2﹣y212,∴(xy ) (x﹣y )12,∵xy3①,∴x﹣y4②,①②得,2x7,∴2x 2﹣2xy2x(x﹣y)7428 .22. (6.00 分)如图,一艘轮船位于灯塔 P 的北偏东 60方向,与灯塔 P 的距离为 80 海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东45方向的 B 处,求此时轮船所在的 B 处与灯塔 P 的距离. (参考数据≈2.449 ,结果保留整数)[来源Zxxk.Com]【分析】过点 P 作 PC⊥AB ,则在 Rt△APC 中易得 PC 的长,再在直角△BPC 中求出 PB.【解答】解作 PC⊥AB 于 C 点,∴∠APC30,∠BPC45 AP80(海里) .在 Rt△APC 中, cos∠APC ,∴PCPAcos∠APC40 (海里) .在 Rt△PCB 中,cos ∠BPC ,∴PB 40 ≈98(海里) .答此时轮船所在的 B 处与灯塔 P 的距离是 98 海里.23. (7.00 分)九年级一班开展了“ 读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整的频数分布表和扇形统计图.类别 nbsp;频数(人数) nbsp;频率小说 16 nbsp;戏剧 4散文 a nbsp;其他 b合计 nbsp;1根据图表提供的信息,解答下列问题(1)直接写出 a,b,m 的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的 2 人恰好乙和丙的概率.【分析】 (1)先根据戏剧的人数及其所占百分比可得总人数,再用总人数乘以散文的百分比求得其人数,根据各类别人数之和等于总人数求得其他类别的人数,最后用其他人数除以总人数求得 m 的值;(2)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解(1)∵被调查的学生总人数为 41040 人,∴散文的人数 a40208,其他的人数 b40﹣(1648)12 ,则其他人数所占百分比 m 10030,即 m30;(2)画树状图,如图所示所有等可能的情况有 12 种,其中恰好是丙与乙的情况有 2 种,所以选取的 2 人恰好乙和丙的概率为 .24. (7.00 分)如图,在 Rt△ABC 中,∠ACB90,D、E 分别是 AB、AC 的中点,连接 CD,过 E 作 EF∥DC 交 BC 的延长线于 F.(1)证明四边形 CDEF 是平行四边形;(2)若四边形 CDEF 的周长是 25cm,AC 的长为 5cm,求线段 AB 的长度.【分析】 (1)由三角形中位线定理推知 ED∥FC ,2DEBC ,然后结合已知条件“EF∥DC” ,利用两组对边相互平行得到四边形 DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到 AB2DC,即可得出四边形 DCFE 的周长ABBC,故 BC25﹣AB,然后根据勾股定理即可求得;【解答】 (1)证明∵D 、E 分别是 AB、AC 的中点,F 是 BC 延长线上的一点,∴ED 是 Rt△ABC 的中位线,∴ED∥FC.BC2DE,又 EF∥DC,∴四边形 CDEF 是平行四边形;(2)解∵四边形 CDEF 是平行四边形;∴DCEF,∵DC 是 Rt△ABC 斜边 AB 上的中线,∴AB2DC,∴四边形 DCFE 的周长ABBC,∵四边形 DCFE 的周长为 25cm,AC 的长 5cm,∴BC25﹣ AB,∵在 Rt△ABC 中,∠ACB90,∴AB 2BC2AC2,即 AB2(25﹣ AB) 252,解得,AB13cm ,25. (7.00 分)某学校计划购买排球、篮球,已知购买 1 个排球与 1 个篮球的总费用为 180 元;3 个排球与 2 个篮球的总费用为 420 元.(1)求购买 1 个排球、1 个篮球的费用分别是多少元(2)若该学校计划购买此类排球和篮球共 60 个,并且篮球的数量不超过排球数量的 2 倍.求至少需要购买多少个排球并求出购买排球、篮球总费用的最大值【分析】 (1)根据购买 1 个排球与 1 个篮球的总费用为 180 元;3 个排球与 2个篮球的总费用为 420 元列出方程组,解方程组即可;(2)根据购买排球和篮球共 60 个,篮球的数量不超过排球数量的 2 倍列出不等式 ,解不等式即可.【解答】解(1)设每个排球的价格是 x 元,每个篮球的价格是 y 元,根据题意得 ,解得 ,所以每个排球的价格是 60 元,每个篮球的价格是 120 元;(2)设购买排球 m 个,则购买篮球(60﹣m )个.根据题意得60﹣m≤2m,解得 m≥20,又∵排球的单价小于蓝球的单价,∴m20 时,购买排球、篮球总费用的最大购买排球、篮球总费用的最大值2060 401206000 元.26. (8.00 分)如图, A(4,3)是反比例函数 y 在第一象限图象上一点,连接 OA,过 A 作 AB∥x 轴,截取 ABOA(B 在 A 右侧) ,连接 OB,交反比例函数y 的图象于点 P.(1)求反比例函数 y 的表达式;(2)求点 B 的坐标;(3)求△OAP 的面积.【分析】 (1)将点 A 的坐标代入解析式求解可得;(2)利用勾股定理求得 ABOA5,由 AB∥x 轴即可得点 B 的坐标;(3)先根据点 B 坐标得出 OB 所在直线解析式,从而求得直线与双曲线交点 P的坐标,再利用割补法求解可得.【解答】解(1)将点 A(4,3)代入 y ,得k12,则反比例函数解析式为 y ;(2)如图,过点 A 作 AC⊥x 轴于点 C,则 OC4、AC3,∴OA 5,∵AB∥x 轴,且 ABOA5,∴点 B 的坐标为(9,3) ;(3)∵点 B 坐标为(9, 3) ,∴OB 所在直线解析式为 y x,由 可得点 P 坐标为(6,2) ,过点 P 作 PD⊥x 轴,延长 DP 交 AB 于点 E,则点 E 坐标为(6,3) ,∴AE2、PE1、PD2 ,则△OAP 的面积 (26)3﹣ 62﹣ 215.27. (9.00 分)如图, AB 是⊙O 的直径,点 E 为线段 OB 上一点(不与 O,B 重合) ,作 EC⊥ OB,交⊙O 于点 C,作直径 CD,过点 C 的切线交 DB 的延长线于点 P,作 AF⊥PC 于点 F,连接 CB.(1)求证AC 平分∠FAB;(2)求证BC 2CECP;(3)当 AB4 且 时,求劣弧 的长度.【分析】 (1)根据等角的余角相等证明即可;(2)只要证明△CBE ∽△CPB,可得 解决问题;(3)作 BM⊥PF 于 M.则 CECMCF,设 CECMCF3a,PC4a,PMa ,利用相似三角形的性质求出 BM,求出 tan∠BC M 的值即可解决问题;【解答】 (1)证明∵AB 是直径,∴∠ACB90 ,∴∠BCP∠ACF90,∠ACE∠BCE90,∵∠BCP ∠BCE,∴∠ACF∠ACE ,(2)证明∵OCOB,∴∠OCB∠OBC,∵PF 是 ⊙O 的切线, CE⊥AB,∴∠OCP∠CEB90,∴∠PCB∠OCB90,∠BCE∠OBC90 ,∴∠BCE∠BCP,∵CD 是直径,∴∠CBD∠CBP90 ,∴△CBE∽△CPB,∴ ,∴BC 2CECP;(3)解作 BM⊥PF 于 M.则 CECMCF,设 CECMCF3a,PC4a,PMa ,∵∠MCB∠ P90,∠P∠PBM90 ,∴∠MCB ∠PBM,∵CD 是直径,BM⊥PC,∴∠CMB ∠BMP90,∴△BMC∽△ PMB,∴ ,∴BM 2CMPM3a2,∴BM a,∴tan∠BCM ,∴∠BCM30 ,∴∠OCB∠OBC∠BOC60,∠BOD120∴ 的长 π.28. (9.00 分)如图,抛物线 yx2bxc 与 x 轴交于 A、B 两点,B 点坐标为(4,0) ,与 y 轴交于点 C(0,4) .(1)求抛物线的解析式;(2)点 P 在 x 轴下方的抛物线上,过点 P 的直线 yxm 与直线 BC 交于点 E,与 y 轴交于点 F,求 PEEF 的最大值;(3)点 D 为抛物线对称轴上一点.①当△BCD 是以 BC 为直角边的直角三角形时,直接写出点 D 的坐标;②若△BCD 是锐角三角形,直接写出点 D 的纵坐标 n 的取值范围.【分析】 (1)利用待定系数法求抛物线的解析式;(2)易得 BC 的解析式为 y﹣x4,先证明△ECF 为等腰直角三角形,作 PH⊥y轴于 H,PG∥y 轴交 BC 于 G,如图 1,则△EPG 为等腰直角三角形,PE PG,设 P(t ,t 2﹣4t3) (1<t<3) ,则 G(t ,﹣ t3) ,接着利用 t 表示PF、 PE,所以 PEEF2PEPF﹣ t25 t,然后利用二次函数的性质解决问题;(3)①如图 2,抛物线的对称轴为直线 x﹣点 D 的纵坐标的取值范围.②由于△BCD 是以 BC 为斜边的直角三角形有 4( y﹣3) 21y218,解得 y1,y 2 ,得到此时 D 点坐标为( , )或( , ) ,然后结合图形可确定△BCD 是锐角三角形时点 D 的纵坐标的取值范围.【解答】解(1)把 B( 4,0) ,C (0,4)代入 yx2bxc,得,解得 ,∴抛物线的解析式为 yx2﹣5x4;(2)易得 BC 的解析式为 y﹣x4,∵直线 yxm 与直线 yx 平行,∴直线 y﹣x4 与直线 yxm 垂直,∴∠CEF90,∴△ECF 为等腰直角三角形,作 PH⊥ y 轴于 H,PG ∥y 轴交 BC 于 G,如图 1,△EPG 为等腰直角三角形,PEPG,设 P( t,t 2﹣5t4) (1<t <4) ,则 G(t,﹣t4) ,∴PF PH t,PG﹣t4﹣ (t 2﹣5t4)﹣t 24t,[来源学。科。网]∴PE PG﹣ t22 t,∴PEEFPE PEPF2PEPF﹣ t24 t t﹣ t25 t﹣ (t﹣ ) 2 ,当 t 时,PEEF 的最大值为 ;(3)①如图 2,抛物线的对称轴为直线 x ,设 D( ,y) ,则 BC2424232,DC 2( ) 2(y﹣4 ) 2,BD 2(4﹣ )2y2 y2,当△BCD 是以 BC 为直角边,BD 为斜边的直角三角形时, BC2DC2BD2,即32( ) 2(y﹣4) 2 y2,解得 y5,此时 D 点坐标为( , ) ;当△BCD 是以 BC 为直角边,CD 为斜边的直角三角形时,BC 2DB2DC2,即 32y2( ) 2(y﹣4) 2,解得 y﹣1,此时 D 点坐标为( ,﹣ ) ;综上所述,符合条件的点 D 的坐标是( , )或( ,﹣ ) ;②当△BCD 是以 BC 为斜边的直角三角形时,DC 2DB2BC2,即( ) 2(y﹣ 4) 2y232,解得 y1 ,y 2 ,此时 D 点坐标为( , )或( , ) ,所以 △BCD 是锐角三角形,点 D 的纵坐标的取值范围为 <y < 或﹣ <y< ./p

    注意事项

    本文(2018年大庆市中考数学试卷含答案解析.doc)为本站会员(zzssll)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373785568@qq.com或直接QQ联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     浙公网安备33030202001339号

    网站大部分作品源于会员上传,除本网站整理编辑的作品外,版权归上传者所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    收起
    展开